EE2026: DIGITAL DESIGN
Academic Year 2021-2022, Semester 2
LAB 3: Sequential Circuits in Verilog

OVERVIEW

A sequential circuit is one where the outputs depend on the current inputs and the sequence of past inputs. As a result, a
sequential circuit has memory, also called states. In this lab, some basic sequential circuits will be designed to make an LED blink
at various speeds.

The pre-requisites for this lab are:

e Avery good understanding and application of dataflow modelling and structural modelling in designing modules.

e Knowing how to use the Vivado IDE well.

e Familiarity and knowledge on how to use “Set as Top”, “reg” and “wire”.

This lab will cover the following:

e Using a signal that inverts itself periodically, which shall be called CLOCK.
e Making a physical LED blink by using the Basys 3 development board clock signal.

Tasks for this lab include:
e Creating a slower clock from a faster clock.

e Having a physical LED blink noticeably on the Basys 3 development board, by using the slower clock.
e Using a switch to make a physical LED blink at two different speeds on the Basys 3 development board.

GRADED ASSIGNMENT [LUMINUS SUBMISSION: WEDNESDAY 23" FEBRUARY 2022, NOON]:

Further details are available at the end of this lab manual.

THE BLINKING LED

A simple blinking LED is required to be implemented on the FPGA. To do this, a new signal, CLOCK, will be introduced.

The CLOCK signal is an external input signal that resembles a square wave of 50% duty cycle. If this CLOCK signal is connected

directly to a physical LED, the latter will light up when the signal is HIGH, and will switch off when the signal is LOW, as illustrated
in Figure 3.2.

ON ON ON ON ON

CLOCK

OFF OFF OFF OFF OFF OFF

Figure 3.2: A CLOCK signal with 50% duty cycle

A simple dataflow description in Verilog for a blinky module is written first, followed by a simulation source to verify the design.
To create the square wave, or CLOCK signal, in the simulation source, a new section of codes will now be introduced:

Verilog code for blinky, using the dataflow method

module blinky (input CLOCK, output LED);
assign LED = CLOCK;

endmodule

Simulation source code to test the blinky design

‘timescale 1ns / lps
module test blinky();
reg CLOCK; wire LED;
blinky dut (CLOCK, LED);
initial begin
CLOCK = 0;
end
always begin
#5 CLOCK = ~CLOCK;

end

endmodule

Expected simulation waveform for the blinky design

Based on the Verilog code and simulation results, check your understanding by answering the following questions:

1. What is the unit of time being used in the simulation source?

2. Every 5 units of time, the value of CLOCK is being inverted. What is the clock frequency being used in this simulation?

3. What would happen if the testbench code CLOCK = 0 is removed?

For the hardware implementation, instead of using an external signal generator for the CLOCK signal to the Artix-7 FPGA, the Basys
3 development board includes a single 100 MHz clock generator connected to pin W5 of the Artix-7 FPGA.

Using the original contents of the Basys3_Master.xdc in your constraint file, follow these steps:

1. Uncomment lines 7 to 9 to create a clock signal of 100 MHz with 50% duty cycle. If required, rename the signal to the name
used in your blinky code. In our example, the name CLOCK was used, and the final changes may look similar to Figure 3.3.

2. Configure the output signal LED that is present in your blinky code (or the name chosen by you while writing the code) by
linking it to any physical LED on the Basys3 development board.

4 ~
1
2
33
4
5
13 .
7 set_property PACKAGE_PIN WS [get_ports
8 set_property IOSTANDARD LVCMOS33 [get_ports{ CLOCK]]
9 create_clock -add -name sys_clk_pin -period 10.00 -waveform {0 S} [get_port

Figure 3.1: Modifying your constraint file, based on the contents of the Basys3_Master.xdc

You may optionally generate the bitstream and upload your code to the Basys3 development board. What do you “notice”
about the “blinking” LED?

COUNTER FOR A SLOWER CLOCK

To be able to observe a blinking LED at a frequency that is visible to the human eyes, modifications need to be done to the Verilog
code to have a slower clock. Let us introduce a temporary variable COUNT that is incremented by 1 at every rising edge (transition
from low to high; also called a positive edge) of the CLOCK signal, as shown in Figure 3.4.

CLOCK

COUNT ooooX 0001 X 0010 X 0011 X 0100 X 0101 >

Figure 3.4: Increasing COUNT at each rising edge of CLOCK

Verilog code for an incrementing counter of 4-bit, using behavioural modelling

module slow blinky module (input CLOCK) ;
reg [3:0] COUNT = 4'b0000;
always @ (posedge CLOCK) begin
COUNT <= COUNT + 1;

end

endmodule

Now, use a conditional statement that changes the state of an output signal, called SLOW_CLOCK, whenever the COUNT reaches
zero. The initial state of SLOW_CLOCK can be zero or one. Here, since the 4-bits COUNT has 16 possible states, it would mean that
SLOW_CLOCK changes state after 16 clock cycles of CLOCK. In other words, SLOW_CLOCK is 1/16% the clock speed of CLOCK.

Partial Verilog code for toggling SLOW_CLOCK signal, using behavioural modelling

always @ (posedge CLOCK) begin

COUNT <= COUNT + 1;

SLOW CLOCK <= (COUNT == 4'b0000) ? ~SLOW CLOCK : SLOW CLOCK ;
end

UNDERSTANDING | TASK 4
Simulate the Verilog codes, so that a waveform that toggles every 16™ clock cycle can be observed
Finally, explore what happens if SLOW_CLOCK is forcefully toggled before the overflow to 0 occurs. To do so, modify the

conditional statement to allow SLOW_CLOCK to toggle an earlier clock cycle instead of waiting for 16 clock cycles.
Simulate the Verilog codes again and observe if the waveforms have toggled earlier.

FURTHER ANALYSIS IN THE SIMULATION WAVEFORM WINDOW

By default, the simulation window only shows the waveforms of input
and output signals. To see the waveforms of variables during the
simulation, such as the variable COUNT:

1. Select the dut under the simulation module being used

2. Inthe Objects window, right click on the COUNT variable

3. Choose Add To Wave Window

After adding the variable COUNT to the wave window, the current
simulation needs to be re-run. Follow these steps:
1. Restart the simulation © ©o Py

2. Set the simulation time and units (). (o0 il o®

3. Run the simulation for the amount of time set in step 2
This is an important step to remember if you want to
simulate for more than the default 1000 ns of simulation!!!

The COUNT variable can then be expanded by clicking on the + symbol to the left of COUNT. This allows for every individual
bit to be observed as independent waveforms:

Create 4 different clock signals with approximately (A precise value is not required) the following clock frequencies:
e clock_A:1000 Hz
e clock_B:100Hz
e clock_ C:10Hz
e clock D:1Hz
Simulate clock_A to confirm that you have a clock of approximately 1000 Hz.

Simulate clock_B to confirm that you have a clock of approximately 100 Hz.

Self-thinking: Why do you think it is not always feasible to simulate the very slow clocks, such as 10 Hz and 1 Hz?

THE NOTICEABLE BLINKING LED (POST-LAB NON-GRADED — NO SUBMISSION REQUIRED):

It is strongly encouraged to complete this practice task before working on the graded post-lab assignment!
Assume LDO on the Basys 3 development is the LED to blink.

Consider the three switches SW0, SW1 and SW2, and their behaviours:
e When these four switches are OFF, LDO must be OFF
e When SWO0 is ON, LDO must blink at 100 Hz
e When SW1 is ON, LDO must blink at 10 Hz
e When SW2 is ON, LDO must blink at 1 Hz

Implement the above requirement on the Basys 3 development board. You can use the multiplexers, if-else statements, or case
statements to write the conditional codes. It is also up to you to decide which switch has higher importance.

Note: In the EE2026 labs, a blinking frequency of 1 Hz means that the LED should be ON for 0.5 seconds, and OFF for around 0.5
seconds, for each blinking cycle

GRADED POST-LAB ASSIGNMENT

Complete as much as possible, in one working bitstream for this whole assignment. It is much better to have a working program
with some completed functionalities, instead of submitting a program without a working bitstream (No marks given).

IMPORTANT CHARACTERS

In this assignment, these are the important characters to note from your student matriculation number:
e The 1 rightmost numerical value of your student matriculation number (Subtask A)
e The 2" rightmost numerical value of your student matriculation number (Subtask B)

e The five rightmost numerical values of your student matriculation number (Subtask D)
e The rightmost alphabet of your student matriculation number (Subtask D)

INITIALISATION

When the program starts, switches SW0 to SW15 must be in the OFF position. The seven segment displays are all be OFF.
SUBTASK A

At the start of the program, a set of LEDs starting from LDO to MAX_LED (Including) are required to turn ON after every

TIME_COUNT. Other LEDs, from MAX_LED (Excluding) to LD15, are OFF. MAX_LED is dependent on the 1% rightmost numerical
value of your student matriculation number, as indicated in the table below:

Ni;zlr%:atr\]/?lze MAX_LED TIME_COUNT
0		LD14		0.20 seconds (Error of + 0.05 seconds accepted)
1		LD13		0.36 seconds (Error of + 0.05 seconds accepted)
2		LD12		0.54 seconds (Error of + 0.05 seconds accepted)
3		LD11		0.75 seconds (Error of + 0.05 seconds accepted)
4 I LD10		1.00 seconds (Error of + 0.05 seconds accepted)		
5		LD9		1.20 seconds (Error of + 0.05 seconds accepted)
6		LD8		1.11 seconds (Error of + 0.10 seconds accepted)
7		LD7		1.00 seconds (Error of + 0.10 seconds accepted)
8		LD6		0.86 seconds (Error of + 0.10 seconds accepted)
9		LD5		0.67 seconds (Error of + 0.10 seconds accepted)

When all the LEDs from LDO to MAX_LED are ON (and not before), the user can turn ON certain switches. These switches should
make certain LEDs blink, as indicated in the truth table below (X is the don’t care condition):

INPUTS OUTPUTS ‘

| sw2 | sw1 || swo || MAX_LEDtoLD2 || LD2 | LD1 | LDO |
Lo Jlo || of ON [ON [ON [ON |
[o || o || 1 | ON I ON I ON | Blinkat1Hz |
Lo || 1 | x| ON [ON | Blinkat10Hz | ON |
L1 | x| x] ON | Blinkat100Hz || ON | ON |

(Error of + 10% accepted for all blinking frequencies)

SUBTASK B

When MAX_LED is ON at the end of SUBTASK A, the user will then be required to press certain pushbuttons based on the characters
that appear on the seven segment displays. Recall that the seven segment displays do not show anything before MAX_LED is ON.

Characters to Appear on Seven Segment Displays in this Order

1% Step

2" Step

3" step

4" Step

5™ Step

6" Step

I |
Il

I

~——

1!

2" Rightmost Numerical Value

O I I N[O || LI WIIN =IO

~—

i UP Pushbutton (BTNU) must be pressed before next step

F RIGHT Pushbutton (BTNR) must be pressed before next step

,_-,’ DOWN Pushbutton (BTND) must be pressed before next step

f LEFT Pushbutton (BTNL) must be pressed before next step

= CENTER Pushbutton (BTNC) must be pressed before next step

After the user has pressed the required pushbuttons in the correct order, the system goes into an “UNLOCKED” mode, which is
indicated by LD15 being ON. When LD15 is ON, the seven segment displays must show the 1% step again before proceeding to
SUBTASK C

SUBTASK C

While in “UNLOCKED” mode, it is required to cycle sequentially through the first three steps at a speed determined by switches
SW2, SW1, and SWO. It takes TIME_PASSED amount of time to move to the next step. After the 3™ Step has passed, it is required
to restart from the 15 Step, and the process of cycling through the three steps continues infinitely. The value for TIME_PASSED,
as well as an illustration of the sequential cycle, is shown below:

sw2	sw1	swo	TIME_PASSED			
0		0		0		Infinity (Character paused / No change in characters)
0		0		1		0.500 seconds (Error of + 0.100 seconds accepted)
o		1	x][0.050seconds (Error of + 0.010 seconds accepted)			
1		x	x]	0.005seconds (Error of + 0.001 seconds accepted)		

1% Step 2" Step 3" Step

Note: The blinking LEDs and other LEDs from SUBTASK A must still work while doing SUBTASK C

SUBTASK D

Anytime throughout the whole program (SUBTASK A, B and C), if the user turns ON SW15 for 3 seconds (Error of + 0.3 seconds
accepted), then the following two things must happen:

e All LEDs must turn OFF and stop blinking, except for the LEDs LDX that must be ON. X represents each one of the five
rightmost numerical values of your student matriculation number. Example: If the five values are 59089, then LDO, LD5,
LD8 and LD9 must be ON.

e The seven segment displays must show the last character of your student matriculation on all four anodes (AN3, AN2,
AN1, ANO), with the characters as indicated below:

c

Wi X||Y

11

Rightmost Alphabet A B E H .l |. M N R

—

~ud

-~

1

—~—
1

~——

I I =
I I 11 I I

———
~I~
-

1
—

i~
—~——

Required 7-Segments Character

-~

If the user turns SW15 OFF again, immediately (Unlike the 3 seconds waiting time when SW15 is turned ON) the LEDs LDO to LD15,
as well as the seven segment displays should work as described in all the previous SUBTASKS.

SUGGESTIONS

e A counter whose value can change at each clock cycle can be considered. For example, that counter can count0, 1,2,3,0, 1,
2, 3 etc ... Following that, if-else statements, multiplexers, or case statement that indicates what to do at each specific counter
value can be created

Case statements are recommended here, and the case statement template is given below.

case (expression)
case_item: statement or statement group
case_item: statement or statement group
default: statement or statement group
endcase

e Anexample in using case is given below.

always @ (posedge clk 25 mhz)

begin
case (counter value)
27d0:
begin
my value a <= 20;
my value b <= 40;
end
27dl:
begin
my value a <= 100;
my value b <= 200;
end
2'd2: my value c <= 5;
default: my value d <= 9;
endcase
end

e Case statements and if-else statements must be inside an always block.

e Conditional statements using multiplexers can be within or outside always block.

o Be careful of parallel execution of the always blocks. Multi-driven nets indicate that there are conflicting values being given
to the same signal from different always blocks. For example, one cannot tell a signal to increase at a time instant t, and at

that same time instant t, telling it to decrease

e Refer to http://tiny.cc/ee2026wiki for more details on commonly encountered errors.

LUMINUS SUBMISSION INSTRUCTIONS

Ensure that your bitstream has been successfully generated and tested on your Basys 3 development board BEFORE archiving
your Vivado workspace for LumiNUS upload

It is compulsory to archive your project in a compressed form without any saved simulation waveforms. In the uploaded
archive, the codes (.v files) are important, not the waveforms (.wdb files). The archive size should not exceed 4 MB in size
for any lab assignments. Follow the instructions given in the pdf: “Archive Project in Vivado 2018.02”

After following the instructions in “Archive Project in Vivado 2018.02”, rename your project archive as indicated in the
appendix of this lab manual

Upload to LumiNUS EE2026 -> Files -> Lab and Project - Materials and Submissions -> Lab 3 Submission

Download your LumiNUS archive after uploading. Click and drag the single folder within that archive to desktop, and then
open the Vivado project in that extracted folder to see if it can be opened. Check if you can also run your bitstream correctly.
No project files and no working bitstream is equivalent to losing all marks

The LumiNUS upload must be completed by Wednesday 23" February 2022, 12:00 P.M. (Noon). Avoid uploading during the
grace period of 2 hours

A penalty of 25% applies for late submissions of up to 1 week

The late submission folder closes 1 week after the original deadline. Late submissions are not accepted and not graded if a
submission is found within the on-time folder, or if grading has already started on an earlier submitted file. The late
submission folder will be located at: LumiNUS EE2026 -> Files -> Lab and Project - Materials and Submissions -> Lab 3
Submission (Late Submission)

Plagiarism is penalised with a 100% penalty for all SOURCES and RECIPIENTS

All past and future submissions, and marks, will be reviewed in greater detail, for any person found to have plagiarised

ALL THE SUBMISSION INSTRUCTIONS LISTED ABOVE WILL AFFECT YOUR GRADES!

GRADING PROCESS

During subsequent lab sessions, our graders will be providing you updates on the grading of your submission

Submissions not following all the LUMINUS SUBMISSION INSTRUCTIONS (listed above) will not be graded immediately, and
will instead be reviewed towards the end of the semester. You will not be able to see your results during the labs in such
situations

APPENDIX (COMPULSORY renaming before just LumiNUS upload):

It is compulsory to rename your project archive just before the LumiNUS upload, as listed in the table below.

Do not change any other part of the naming. Simply copy the naming from the table below, and paste it while renaming your
project archive.

Penalties will be incurred if your submission cannot be found according to the exact naming template below.

Aaron Chan Zhi

L3 Thurs AM Aaron Chan zhi 476 Archive

Ajay Shanker

L3 Thurs AM Ajay Shanker 806 Archive

Alphonsus Teow Rui Jie

L3 Thurs AM Alphonsus Teow Rui Jie 502 Archive

Alvin Ben Abraham

L3 Thurs AM Alvin Ben Abraham 394 Archive

Amadeus Lim Ding Shin

L3 Thurs AM Amadeus Lim Ding Shin 412 Archive

Amit Rahman

L3 Thurs AM Amit Rahman 599 Archive

Ang Jia Le Marcus

L3 Thurs AM Ang Jia Le Marcus_ 025 Archive

Chan Ee Hong

L3 Thurs AM Chan Ee Hong 898 Archive

Chen Zi Han

L3 Thurs AM Chen Zi Han 549 Archive

Chien Jing Wei

L3 Thurs AM Chien Jing Wei 540 Archive

CHUA WEI XUAN

L3 Thurs AM CHUA WEI XUAN 716 Archive

Chua Wen Xin Kyrene

L3 Thurs AM Chua Wen Xin Kyrene 431 Archive

Darren Loh Rui Jie

L3 Thurs AM Darren Loh Rui Jie 289 Archive

Dennis Wong Guan Ming

L3 Thurs AM Dennis Wong Guan Ming 806 Archive

Huang Yu Chiao

L3 Thurs AM Huang Yu Chiao 102 Archive

Ivan Theng Wen Rong

L3 Thurs AM Ivan Theng Wen Rong 344 Archive

Jia Yixuan

L3 Thurs AM Jia Yixuan 150 Archive

Karthikeyan Vigneshram

L3 Thurs AM Karthikeyan Vigneshram 697 Archive

Leong Wei Lun, Alfred

L3 Thurs AM Leong Wei Lun Alfred 609 Archive

Liu Junhao

L3 Thurs AM Liu Junhao 523 Archive

Marvin Pranajaya

L3 Thurs AM Marvin Pranajaya 683 Archive

Ng Sihan, Ian

L3 Thurs AM Ng Sihan Ian 817 Archive

Ong zhi Hong

L3 Thurs AM Ong Zhi Hong 922 Archive

Raymond Bala

L3 Thurs AM Raymond Bala 127 Archive

See Zhuo Ruil Jorelle

L3 Thurs AM See Zhuo Rui Jorelle 490 Archive

Shanmugam Surya

L3 Thurs AM Shanmugam Surya 189 Archive

Shawn Tan Jinhui

L3 Thurs AM Shawn Tan Jinhui 247 Archive

Shin Donghun

L3 Thurs AM Shin Donghun 808 Archive

Stefan Choo Bin Hao

L3 Thurs AM Stefan Choo Bin Hao 098 Archive

Syed Muhamad Amali B Syed A A

L3 Thurs AM Syed Muhamad Amali B Syed 373 Archive

Teh Zi-Chun

L3 Thurs AM Teh ZiChun 328 Archive

Wen Chen Yu

L3 Thurs AM Wen Chen Yu 109 Archive

Wilson Ng Jing An

L3 Thurs AM Wilson Ng Jing An 686 Archive

Yong Chin Han

L3 Thurs AM Yong Chin Han 814 Archive

Yuan Xinrui

L3 Thurs AM Yuan Xinrui 211 Archive

